बरानी क्षेत्रों में वर्षा जल उत्पादकता वृद्धि करने की विधियाँ

डॉ. शान्ति कुमार शर्मा¹, डॉ. रविकान्त शर्मा² डॉ. के. कोठारी³

डॉ. शान्ति कुमार शर्मा

क्षेत्रिय अन्संधान निदेशक, कृषि अन्संधान केन्द्र, उदयप्र

संपर्कः फोनः M: 09414430757

ई मेलः shanti_organic@rediffmail.com

बारानी कृषि में भूमि संरक्षण के साथ-साथ वर्षा जल संरक्षण का भी महत्वपूर्ण स्थान है। खरीफ में फसल उत्पादन की सफलता के लिए आवश्यक है कि वर्षा से प्राप्त होने वाले जल को खेत में ही रोका जा, एवं यह भी सुनिश्चित किया जाये कि रोका गया जल समान रूप से पूरे खेत में विस्तारित हो। इसके अभाव में दीर्घकालीन सूखें की अवस्था में फसलों की उपज कम हो जाती है। अनुसंधान परिणामों के आधार पर यह पाया गया है कि ग्रीष्मकालीन जुताई जल से अधिक उत्पादन प्राप्त कर जल उत्पादकता बढ़ायी जा सकती है।

बारानी खेती के लिये भूमि व जल बहुमूल्य प्राकृतिक संसाधन है। अतः इनका संरक्षण नितान्त आवश्यक है। भूमि की ऊपरी सतह पौधों को स्थिर रहने में सहयोग देती है। तथा भौतिक, रासायनिक व जैविक गुण इसी मृदा से ही पौधों की को अधिकांश पोषक तत्व उपलब्ध कराते है। जो पौधो की बढ़वार को प्रभावित करते है। वर्षाकाल में इस उपजाऊ सतह वाली मिट्टी का कुछ अंश शनै-शनै मृदा क्षरण द्वारा बहकर चला जाता है। यह कटाव इतनी धीमी गित से होता है कि इसे प्रत्यक्ष देखा नहीं जा सकता है। एक अनुमान के अनुसार लगभग 4-5 से 11-2 टन/हैक्टर मिट्टी प्रति वर्ष कटाव के कारण द्वारा नष्ट हो जाती है। कटाव के कारण भूमि की ऊपरी सतहवाली मिट्टी इतनी तीव्र गित से नष्ट होती है कि प्रकृति उसी गित से नई मिट्टी का निर्माण नहीं कर पाती है। परिणाम स्वरूप कृषि योग्य भूमि बंजर भूमि में परिवर्तित हो जाती है। वर्षा की बूंदे मृदा कणों को अपने स्थान से हटाने में विशेष योगदान देती है। सूखी मिट्टी वर्षा की बूंदो को सोख कर धीरे-धीरे आर्द्र हो जाती है। नम मिट्टी पर जब वर्षा की बूंदे गिरती है तो मिट्टी अपनी जगह से बह कर अलग हो जाती है और इस तरह धीरे-धीरे मृदा कण वर्षा जल के साथ मिलकर बह जाते है।

भूमि की जल धारण क्षमता बढ़ाएं

 गर्मी में खेत की मिट्टी की पलटाऊ हल से गहरी करनी चाहिये, जिससे भूमि तप जाती है और वर्षा जल को सोखने की क्षमता बढ़ जाती है। यह पाया गया है कि गर्मियों में 15-20 सें-मी- की एक गहरी जुताई करने से मृदा की पानी सोखने की क्षमता 20 से 30 प्रतिशत तक बढ़ जाती है।

- टैक्टर के खिंचवा व पिहयों के दबाव से भूमि के नीचे एक निश्चित गहराई पर सख्त परत बन जाती
 है। इस सख्त परत को तोड़ने के लिये तीन वर्ष में एक बार गहरी जुताई आवश्यक है। इसके लिए
 'चिजल' हल का उपयोग किया जा सकता है।
- भूमि में उपलब्ध जीवांश पदार्थ जल धारण क्षमता को प्रभावित करने में महत्वपुर्ण भूमिका निभाते
 है। मिट्टी में जीवांश की पूर्ति हेत् देसी खाद 5 टन प्रति हैक्टर की दर से देना उपयोगी रहता है।
- भूमि में नमी संचयन क्षमता बढ़ाने हेतु फसलों के अनुपयोगी अवशेष भी काम में लिए जा सकते है। इसके अतिरिक्त भूमि में नमी संचयन के लिए ढलान के विपरित जुताई, बुआई के पश्चात् डोलियां बनाना, कन्ट्र, तथा खेत को क्यारियों (5 X 5 मी-) में विभाजित कर सन्तसस्य, घास पट्टी, लूज स्टोन चेक डैम आदि तकनिकों को अपनाया जा सकता है। समतल क्यारी बुवाई की तुलना में मेड़बन्दी तथा ढलान के विपरीत बुआई करने से मक्का की उपज में क्रमशः 6.8 तथा 15.9 प्रतिशत की बढ़ोतरी प्राप्त की जा सकती है। ऐसा करने से 1.92 तथा 0.96 टन मिट्टी/हैक्टर वर्ष खेत से बहकर जाने से बचाई जा सकती है। समतल क्यारी बुवाई के बाद डोलियां बनाने से लगभग 40 प्रतिशत पानी को खेत से बहकर बाहर जाने से रोका जा सकता है।

क्र-सं	उपचार	औसत उपज (क्विंटल/हैक्टर)	लाभ: लागत अनुपात
1-	समतल बुआई	9.89	0.99
2-	ढलान के विपरीत बुआई	10.57	1.02
3-	समतल क्यारी बुवाई के बाद डोलियां	11.47	1.20

क्र.सं.	विषय	तकनीकी	प्रभाव विश्लेषण	तकनीकी प्रसारण के
				अवरोधक
1-	वर्षा जल	• गहरी जुताई	भरपूर	-
	प्रबन्धन	• बुआई के बाद मेडबन्दी (मक्का	मध्यम	बैल जोडी का कमी
		में)		मक्का के प्रति लगाव
		 अन्तः स्थानिक जल संग्रहण 	कम	श्रम की कमी
		• समोच्चय खेती	मध्यम	-
		• ढलान के विपरीत बुवाई	भरपूर	भू जोत का आकार कम
		• नाड़ा खेती (उन्नत) भरपूर	मध्यम	होना
2-	फसल तथा	• उन्नत किस्मे	मध्यम	समय पर गुणवता बीज
	फसल पद्धति			का न मिलना
		• मक्का / उड़द (2:2) की मिलवा	मध्यम	जानकारी का अभाव
		खेती		

3-	जोखिम टालने की आकस्मिक योजना	 मूंगफली / तिल (6:2) की मिलवा खेती मक्का-उड़द फसल चक्र चने के साथ सरसों की 4 मीटर विपरीत में मिलवां खेती मानसून के देरी से आगमन पर (3 सप्ताह देरी से) चारा ज्वार, तिल, एवं मूगं की बुवाई 		जानकारी का अभाव तथा उपयुक्त बुआई यंत्रो की कमी जानकारी की कमी जनकारी की कमी तथा समय पर बीज की उपलब्धता
4-	समेकित पोषक तत्व प्रबन्धन	 फसलों में पोषक तत्वों का 50 प्रतिशत उर्वरकों के रूप में डालना छलहनी फसलों को फसलचक्र में सम्मिलित करना जैसे कि मक्का-उड़द चक्र या मक्का/उड़द पद्वित जिप्सम तथा सूक्ष्म तत्वों का प्रयोग 	भरपूर	जैविक खाद की सिंचित फसलों में डालने की प्राथमिकता - आवश्यक विशेष जानकारी का अभाव
5-	ऊर्जा प्रबन्धन	 मक्का में कम जुताई से उत्पादन दो पोरा सीड ड्रील व्हील हो रोटावेटर पोस्ट होल डिगर कम 	कम मध्यम मध्यम बहुत कम मध्यम	शुरूआती वर्षे में मक्का की उपज कम होना जनकारी का अभाव जानकारी का धीमी गति से बहुत ज्यादा लागत होना बाजार में उपलब्ध न होना तथा जानकारी का अभाव
6-	वैकल्पिक भूमि उपयोग पद्वति	 सेवन घास की समोच्च खेती सेवन घास के साथ बब्ल की खेती 	मध्यम कम	घुमन्तु जानवरों से सुरक्षा की आवश्यकता सूखे की स्थिति में बबूल की पौध का खत्म होना
7-	फसल विविधीकरण	 आंवला आधारित फसल पद्वित बगीचा लगाने की नाली विधि (बेर में) 	कम मध्यम	आंवला की शुरूआती देखभाल, उच्च लागत जानकारी का अभाव

8-	देशज तकनीकी	•	थोर की जैविक बाड़	भरपूर	नीची भूमि में जैविक
	ज्ञान का				बाड़ स्थापना की समस्या
	बारानी कृषि में	•	मक्का, तिल, ज्वार आदि की	मध्यम	किसान की आर्थिक तथा
	उपयोग		सूखी बुवाई		संसाधन
		•	गहरी जुताई के बाद छिटकवां	स्थानिक	स्थिति के अनुसार
			विधि से बुवाई		_
		•	भूमि में नमी के आधार पर	भरपूर	समय तथा श्रम का
			उर्वरकों का खड़ी फसल में		अभाव
			छिड़काव		

- मक्का की फसल ज्यादा वर्षा व लम्बा सूखा काल दोनों ही परिस्थियों में शीघ्र व सर्वाधिक प्रभावित होती है। अनुसंधान के परिणामों में यह पाया गया है कि मक्का की बुआई डोलियां पर करना श्रेष्ठ रहता है। बुवाई के लगभग एक माह बाद निराई-गुड़ाई के समय पौधों के दोनो ओर मिट्टी चढ़ाकर डोलियां बनायी जा सकती है। अधिक वर्षा काल में डोलिया के माध्यम से अतिरिक्त जल को खेत के बाहर निकाल कर सुरक्षित स्थान पर इकट्ठा किया जा सकता है जो फसल की क्रांतिक अवस्था में जीवनदायिनी सिंचाई के लिये उपयोग में लाया जा सकता है। कम वर्षा की स्थित में डोलियों के बीच संग्रहित जल लम्बी अविध तक पौधों को प्राप्त होता है जिससे फसल को अपेक्षाकृत लम्बा सूखा काल सहन करने की क्षमता प्राप्त होती है।
- कम वर्षा की दशा में मक्का की उपज बढ़ाने के लिए अन्तः प्रक्षेप जल संग्रहण पद्वित का उपयोग करने से मक्का तुल्यांक उपज में परम्परागत शुद्ध मक्का के विपरीत 26 प्रतिशत बढ़ोतरी होती है (सारिणी-2) इस तकनीकी में खेत के कुल क्षेत्रफल के ऊपरी आधे भाग में जो कि जल प्रदायी क्षेत्र कहलाता है, ज्वार (चारा) बोया जाता है तथा निचले शेष आधे भाग जो कि जल प्राप्य क्षेत्र कहलाता है, में मक्का की फसल ली जाती है। इस विधि से उपज बढ़ने के साथ-साथ प्रति इकाई खर्च पर मुनाफा भी अधिक होता है। (सारणी-2)

सारणी 2: अन्तः प्रक्षेप जल संग्रहण पद्धतियों का मक्का तुल्यांक उपज पर प्रभाव

क्र.सं	उपचार	औसत मक्का तुल्यांक	लाभः लागत अनुपात
		उपज (क्विं-/हैक्टर)	
1-	शुद्ध मक्का	15.83	1.46
2-	दो तिहाई जल प्रदायी प्रक्षेप में ज्वार	17.66	1.57
	(चारा) तथा एक तिहाई जल प्राप्य क्षेत्र		
	में मक्का		

3-	आधे जल प्रदायी क्षेत्र में ज्वार (चारा)	19.98	1.85
	तथा आधे प्राप्य क्षेत्र में मक्का		

सारणी 3: मक्का की उपज पर स्थानिक जल संरक्षण विधियों का प्रभाव

क्र.सं	उपचार	मृदा क्षरण	वर्षा बहाव	जल उपयोग दक्षता (कि-
		(टन/है.)	(प्रतिशत)	ग्रा-/है. सेंमी.)
1-	समतल बुवाई	2.68	47.03	15.05
2-	ढलान के विपरीत बुआई	1.72	10.72	16.26
3-	समतल क्यारी बुआई के बाद	0.76	4.57	17.64
	डोलियां			

सारणी 4: विभिन्न फसलों का मृदा क्षरण, एवं वर्षा जल प्रवाह पर प्रभाव तथा लाभः अनुपात (2000 से 2004)

क्र.सं	उपचार	दाने की उपज	मृदा क्षरण	वर्षा जल अपवाह	लाभ: लागत
		(क्वि./हैक्टर)	(ਟਜ/हੈ-)	(प्रतिशत)	अनुपात
1-	मक्का	13.75	2.65	16.93	1.37
2-	मक्का / उड़द (2:2)	16.63	1.67	11.46	1.56
3-	उ ड़द	14.67	2.43	18.94	2.34
4-	मूंगफ <mark>ली</mark>	7.09	2.34	17.98	1.57
5-	ज्वार (चारा)	13.75	3.17	1 <mark>9.6</mark> 1	2.78

भू-संरक्षण तकनीकों से वर्षा जल संरक्षण

ढलानदार खेतों में पानी गिरते ही बहने लगता है और साथ में मिट्टी को भी बहा कर ले जाता है। ढलान वाले खेतों में पानी को रूकने व मिट्टी में शोषित होने का समय नहीं मिलता है। ढलान जितना अधिक होगा उतनी ही तेज गित से पानी का बहाव होगा, पिरणामस्वरूप पानी की मिट्टी को काटकर ले जाने की क्षमता में वृद्धि होगी। कुछ किसान खेत की लम्बाई के अनुरूप ढलान की दिशा में बुवाई करते है। जिससे ढलान की दिशा में पानी को और तेज गित से बहने में सहायता मिलती है और भू-कटाव बढ़ता है। ढलान के विपरीत दिशा में जुताई करने से भूमि व जल कटाव को कम किया जा सकता है। (सारणी-3) बुवाई के बाद, खेत को बडी-बडी क्योरियों (5x5मी-) में बांट देना चाहिएजिससे वर्षा जल अधिक अवशोषित हो सके। इसके लिए बंड फोर्मर यंत्र का उपयोग किया जा सकता है। मक्का की बुवाई के लगभग 20-25 दिन बाद हल चलाकर फसल की पंक्ति के साथ डोलियां बनाने से वर्षा जल का संरक्षण व सम्चित उपयोग होता है।

- यदि भूमि की ढलान 2 से 6 प्रतिशत तक हो तो ढाल के विपरीत दिशा में कन्टूर पर निश्चित अन्तराल पर डोल बनाकर उन पर धामण घास लगायी जानी चाहि,।
- भूमि का ढाल 6 प्रतिशत से अधिक होने पर खेत को सीढ़ीनुमा आकार दिया जा सकता है प्रत्येक सीढ़ी का ढाल 0.5 से 1.0 प्रतिशत होना चाहिए चरागाहों में 8 मीटर से 12 मी- की दूरी पर ढाल के विपरीत दिशा में कन्ट्र पंक्ति पर एक मीटर चैड़ी अंगे्रजी के, के आकार की नाली (डिच) बनायें, जिस की गहराई 30 से.मी. हो व नाली की मिट्टी को डोल बनाने के काम में लिया जा सकता है।
- खेत के पास या मध्य स्थित नाले में पानी के बहाव को कम करने के लिए प्रवाह के बहाव निश्चित
 अन्तराल पर पत्थरों को जमाकर लूल स्टोन चेक डैम बनाया चाहिए इससे खेत का नहीं होगा तथा
 इससे खेत का कटाव नही होगा तथा भूमि में जल स्तर को भी बढ़ोतरी होगी।
- अन्तःसस्य विधि में मुख्य फसल के साथ सहयोगी फसल के रूप में दलहनी फसल की बुवाई करने से खेत का सम्पूर्ण भू-भाग फसल से आच्छादित हो जाता है, जिससे वर्षा की बूंदे सीधी मिट्टी पर न गिर कर पौधो की पितयों पर गिरती है। इससे बूंदो का वेग कम हो जाता है और भूमि कटाव रोकने में सहायता मिलती है। अनुसंधान पिरणामों से विदित हुआ है कि मक्का की अपेक्षा मक्का-उड़द (2:2) के अनुपात में बोने से मृदा का हमस कम होता है तथा खेत से वर्षा जल के अपवाह में भी कमी होती है। (सारणी-4)

वर्षा जल एकत्रीकरण व पुर्नप्रयोग की तकनीकें

समुचित मात्रा में वर्षा के पानी को खेत मे रोकने के बाद भी वर्षा का पानी खेत के बाहर बहकर जाता है। इस पानी को सुरक्षित रूप से खेत के निचले हिस्से में खेत जुताई (फार्म पोंड) में एकत्रित किया जा सकता है। फार्म पोंड खेत के सबसे निचले बिन्दु पर होना चाहिए जिससे अधिक वर्षा जल का आसानी से संग्रहण किया जा सके। फार्म पोंड हेतु काली व भारी मिट्टी वाली भूमि सर्वोत्तम है क्योंकि इसमें पानी का रिसाव बहुत कम होता है, साथ ही फार्म पोंड हेतु स्थान का चयन करते समय यह भी ध्यान रखना चाहिये कि निचली सतह कठोर हो। फार्म पोंड में ढलान (1:1) तथा निकलने वाली मिट्टी से चारो ओर एक मीटर दूरी पर मेइ बन्दी करनी चाहिये। पानी के भराव के लिए आवक मार्ग तथा ज्यादा पानी आने के समुचित निकास की व्यवस्था जरूरी है। अधिक ढलानदार खेतों के निचले हिस्सों में बड़ा डोल बनाकर खेत को नाडी का रूप दिया जा सकता है। इस तरह पोखर या नाडी में एकत्रित जल का उपयोग खरीफ में सूखे की स्थिति में फसल की क्रान्तिक अवस्था में जीवन दायिनी सिंचाई के लिये किया जा सकता है तथा नाडी के अन्दर वाले प्रक्षेप में संचित नमी पर रबी की फसलें बोयी जा सकती है।

बारानी कृषि पर संकार्य अनुसंधान परियोजना (1998-2005) के माध्यम से किसानों के खेतों पर परीक्षणों से यह ज्ञात हुआ कि पुष्प कलिकाओं के निकलने तथा दानों के भराव के समय एक परिपूरक सिंचाई से मक्का, मक्का / उड़द (2:2), मूंगफली, मूंगफली / तिल (6:2) की उपज में क्रमशः 35, 30 तथा 26 प्रतिशत की वृद्धि हुयी है (सारणी 5)

तकनीकी प्रसार एवं प्रभाव

परियोजना काल (2000 से 2004) में किसानों तक पहुंची मुख्य तकनीकी प्रसारण गतिविधियों तथा जल ग्रहण क्षेत्र में संचालित विशेष कार्यवाहियों का आकलन सारणी 5 में दिया गया है।

सारणी 5: संग्रहित जल से सिंचाई का फसलों की उपज पर प्रभाव

फसल	उपज (क्विंटल/हैक्टर)		वृद्धि (प्रतिशत में)
	बिना सिंचाई	एक सिंचाई	
मक्का	18.75	25.30	35.0
मक्का + उड़द (2:2)	18.24	24.83	36.0
म्ंगफली	12.01	15.67	30.05
म्ंगफली + तिल (1:1)	11.22	14.95	26.25

लेखक विवरण

- 1. डॉ. शान्ति कुमार शर्मा, क्षेत्रिय अनुसंधान निदेशक, कृषि अनुसंधान केन्द्र, उदयपुर
- 2. डॉ. रविकान्त शर्मा, सहायक प्राध्यापक, बारानी कृषि अनुसंधान केन्द्र, भीलवाड़ा
- 3. डॉ. ऐ.के.कोठारी, मुख्य वैज्ञानिक, बारानी कृषि अन्संधान केन्द्र, भीलवाड़ा
